补充一个小知识

python 输入重定向为文件

import sys

sys.stdin = open("test.txt")

之后就可以直接从文件读入,不需要手动输入了

链表

实现链表
输入
1 3 5 4 1 9 4
将其存储为链表格式

链表数据结构:

class ListNode:
def __init__(self, x=-1):
self.val = x
self.next = None

创建链表,返回头节点 (尾插法)

def creat_list(line:list) -> ListNode:
root = ListNode()
tail = root
for i in line:
temp = ListNode(i)
tail.next = temp
tail = tail.next
return root.next

遍历链表

def traverse_list(root:ListNode):
'''
遍历链表,没有头节点
'''
temp = root
while temp:
print(temp.val+" ",end="")
temp = temp.next
print()

删除倒数第n个节点,一次遍历

用两个指针指向,第一个指针先走 n+1 步,中间空出n个节点,然后删除即可

def removeNthFromEnd(head:ListNode, n:int)->ListNode:
'''
一次遍历算法
'''
new_head = ListNode(-1)
new_head.next = head
first = new_head
second = new_head
for i in range(n+1):
first = first.next
while first != None:
first = first.next
second = second.next
second.next = second.next.next
return new_head.next

向右旋转链表

就是把单链表组成一个循环链表

def rotateRight(head:ListNode, k:int)->ListNode:
'''
针对链表进行旋转
'''
if k == 0:
return head
if head == None:
return head
temp = head
length = 0
while temp.next != None:
length += 1
temp = temp.next
length += 1
temp.next = head
temp = head
for i in range((length - k%length -1)):
temp = temp.next
new_head = temp.next
temp.next = None
return new_head

创建图

采用邻接表进行存储, ArcNode 代表邻接点, VNode 代表边节点

class ArcNode:
def __init__(self,adjvex, weight):
self.adjvex = adjvex
self.weight = weight
self.next = None
class VNode:
def __init__(self):
self.next = None

输入数据

输入格式:
4 4
0 1 1 0
1 0 1 0
1 1 0 1
1 1 1 1

读入数据,创建邻接矩阵

def create_table()->list:
m,n = [int(i) for i in input().split()] # 自动解包
A = [0 for i in range(m)]
for i in range(m):
A[i] = [int(j) for j in input().split()]
return A

邻接矩阵转换为邻接表

def create_Adj(A)->list:
'''
邻接矩阵转换为邻接表
'''
G = [VNode() for i in range(len(A))]
for i,vex in enumerate(A):
# 第i个节点,及其所有的边
for node,j in enumerate(vex):
if j != 0:
p = ArcNode(node, j)
p.next = G[i].next
G[i].next = p
return G

打印邻接表

def disp_adj(G):
for index,i in enumerate(G):
p = i.next
print(index, end="")
while p != None:
print(" {}->".format(p.adjvex), end="")
p = p.next
print()

深度优先搜索

visited = [0 for i in range(4)]
def DFS(G, v):
'''
深度优先搜索
'''
visited[v] = 1
print(v, end="")
p = G[v].next
while p != None:
w = p.adjvex
if visited[w] == 0:
DFS(G,w)
p = p.next
print()

广度优先搜索

def BFS(G, v):
'''
广度优先搜索
'''
q = Queue()
visited = [0 for i in range(len(G))]
print(v,end="")
visited[v] = 1
q.put(v)
while not q.empty():
w = q.get()
p = G[w].next
while p!=None:
if visited[p.adjvex] == 0:
print(p.adjvex, end="")
visited[p.adjvex] = 1
q.put(p.adjvex)
p = p.next
print()

Dijkstar 算法

def Dijkstra(A, v):
'''
Dijkstar 算法
'''
for i in A:
for index,value in enumerate(i):
if value == -1:
i[index] = sys.maxsize

dist = A[v] # 原始v到各个顶点的距离

path = [0 for i in range(len(A))]
for i in range(len(A)):
if A[v][i] != -1:
path[i] = v
else:
path[i] = -1

s = [0 for i in range(len(A))]
s[v] = 1

for i in range(len(A)):
mindis = sys.maxsize
# 寻找最小路径长度顶点u
for j in range(len(A)):
if s[j] == 0 and dist[j] < mindis:
u = j
mindis = dist[j]

s[u] = 1
for j in range(len(A)):
if s[j] == 0:
if A[u][j] < sys.maxsize and dist[j] > 0 and dist[u]+A[u][j] < dist[j]:
dist[j] = dist[u] + A[u][j]
path[j] = u
return path, dist